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Abstract—Without relying on human annotations, self-
supervised learning aims to learn useful representations of input
data. When trained offline with enormous amounts of unlabelled
data, self-supervised models have been found to provide visual
representations that are equivalent to or better than supervised
models. However, in continual learning (CL) circumstances, when
data is fed to the model sequentially, its efficacy is drastically
diminished. Numerous ongoing learning techniques have recently
been presented for a variety of computer vision problems. In this
study, by utilizing distillation and proofreading, we tackle the
extremely challenging problem of continuously learning a usable
representation in which input data arrives sequentially. We can
prevent severe forgetfulness and continue to train our models by
adding a prediction layer that forces the current representations
vectors to precisely match the frozen learned representations and
an effective selection memory for proofreading previous data.
This makes it possible for us to design a framework for continual
self-supervised learning of visual representations that (i) greatly
enhances the quality of the learned representations, (ii) is suitable
for a number of state-of-art self-supervised objectives, and (iii)
requires little to no hyperparameter tuning. The code of this
paper is made available here cssl-dsdm

I. INTRODUCTION

Deep learning architectures have achieved outstanding im-
provements in computer vision, but when forced to learn new
tasks progressively without forgetting the old, their perfor-
mance suffers significantly. The use of artificial intelligence
in situations where computers must gradually acquire new
and varied representations is impacted by this catastrophic
forgetting issue.

The most well-liked paradigm for unsupervised visual rep-
resentation learning is self-supervised learning (SSL). Under
some conditions (such as offline training with lots of data and
resources), SSL techniques can extract representations with
a similar level of quality as those discovered by supervised
learning. In real-world situations, such as when additional
unlabeled data is gradually made accessible over time, these
assumptions may not always be true. In fact, training must be
repeated across the entire dataset in order to incorporate new
knowledge into the model, which is unnecessary, expensive,
and occasionally even impossible when the old data is unavail-
able. Continuous learning is one solution to this issue, where
models are updated gradually as new data comes in.

Continual learning is a paradigm for learning where various
data and tasks are supplied to the model sequentially, much
to what humans often experience. Artificial neural networks
(ANNS) prefer learning in a more concurrent way and have
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been demonstrated to forget catastrophically, in contrast to
human or animal learning, which is mostly gradual and
sequential in nature. The failure of ANNs to remember past
knowledge in the presence of fresh input is typically referred
to as catastrophic forgetting (CF) in neural networks. Catas-
trophic forgetting is a direct implication of continual learning
in ANNs and is largely considered as a direct consequence
of the overlap of distributed representations in the network.
The commonly used definition of continual learning refers to
a paradigm for learning where ANNs are rigidly trained se-
quentially on various datasets and tasks ([1} 2]]). The important
conditions of the training paradigm are:
o Sequential training i.e. for a single neural network f with
parameters 6 trained at time 7" with sequentially available
data Dy n,

T1(fo(D1)) < Ti(fo(D1)) < ... <Ti(fo(D1)) (1)

« No negative exemplars, examples or feedback i.e. future
(or past) data samples cannot be provided to the network
with the current data/task,

Vij € (1..N),(DiN Dj)izj =0 )

Most prior works deal with CF by either completely remov-
ing the representational overlap ([3} |4]) or more frequently, by
replaying data from previous tasks. Data replay methods can
deal with CF but, in turn, lead to a reduced capability of the
network to discriminate between old and new inputs ([5]). This
is referred to as Catastrophic Remembering (CR) and has been
shown to be a significant limitation of replay methods ([6} |5]).

Regardless of the method used, continual learning prob-
lems can be categorized into task-incremental learning (Task-
IL), domain-incremental learning (Domain-IL) and class-
increasing learning (Class-IL). In the first scenario, models
are always informed about which task needs to be performed.
In the second scenario, task identity is not available at test
time. Models however only need to solve the task at hand;
they are not required to infer which task it is. Finally, in
the third scenario models must be able to both solve each
task seen so far and infer what task they are presented with.
Class incremental learning is the most complex case of data
incremental learning where classes in two data are different.

Continual learning issues can be divided into task-
incremental learning (Task-IL), domain-incremental learning
(Domain-IL), and class-increasing learning (Class-IL), de-
pending on the approach taken. Models in the first scenario are
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always aware of the work that has to be achieved. The task
identification is unavailable at test time in the second case.
However, models are only necessary to complete the current
work; they are not required to determine what the current task
is. In the third scenario, models must be able to both complete
each task that has been shown so far and determine the task
that is being offered to them. The most challenging instance
of data incremental learning occurs when classes in two data
sets differ.

The goal of this work is that we attempt to develop a
method for data incremental continual learning for deep neural
networks which can alleviate the twin problem of Catastrophic
Forgetting and Catastrophic Remembering at the same time,
without violating or relaxing the conditions of a strict continual
learning framework.

Common benchmarks in the CL literature evaluate the dis-
criminative performance of classifiers learned with supervision
from non-stationary distributions. In this work, we follow the
same forgetting phenomenon in the context of SSL.

II. RELATED WORK
A. Self-Supervised Learning

Modern deep neural networks may be taught to perform
impressively on a range of different individual tasks. Deep
learning still faces significant difficulties with sequentially
learning several tasks, nevertheless.Standard neural networks
experience a problem known as “catastrophic forgetting” when
they mostly forget the knowledge associated with previously
acquired tasks when trained on a new task.

Without the use of human annotations, self-supervised
learning attempts to develop meaningful representations of the
incoming data. Recent developments in this area demonstrate
that representations that are learned can be competitive with
supervised representations. These techniques employ various
distorted samples, asymmetric learning updates, momentum
encoders, and non-differentiable operators, among others. Ap-
proaches for self-supervised learning (SSL) have demonstrated
performance on par with supervised learning counterparts [7,
8, 9 (10, |11} |12]]. The majority of these approaches produce
associated views (positives) from a sample using picture
augmentation techniques, after which they build a model that
is resistant to the augmentations. To avoid simple solutions, the
learning update’s asymmetry, or “’stop-gradients,” is essential.

At the same time, cluster-based methods (SwAV [13]],
DeepCluster [14], and DINO [9]) were also proposed. They
do not manipulate features directly, but instead use cluster
prototypes as proxies to compare positive results by cross-
entropy loss. Methods based on redundancy reduction were
also popular. Among these, BarlowTwins [[12] considers an
objective function that measures the cross-correlation matrix
between features, and VicReg [7] uses a combination of
variance, invariance, and covariance regularization. Methods
such as [15]] explore the use of nearest neighbour search
and divide-and-conquer [16]. However, none of the studies
examined the ability of SSL methods to learn continually and
adaptively.

B. Continual Learning Setting

Continual learning has been studied in a variety of scenarios,
often grouped into three categories of increasing difficulty:
tasks, domains, and class increments [[17]]. Instead of using a
single-head classifier for all classes as class increment setting,
the task increment problem method uses a multi-head classifier
for each independent task and the domain increment method
is intended to learn label shifts rather than new classes.

Tasks, domains, and class increments are three categories of
increasing difficulty that have all been used to study continual
learning [17]. The task increment problem technique employs
a multi-head classifier for each independent job instead of
utilizing a single-head classifier for all classes like the class in-
crement setting, and the domain increment method is designed
to learn label changes rather than new classes.

Continual learning may be divided into online learning,
where all data is utilized just once, and offline learning
without epoch restrictions, depending on whether all data
is used more than once to update the model. Furthermore,
depending on whether the boundaries between various tasks
are known, continual learning can be task-based or task-
free. A concept of incremental data learning has just recently
developed [18]] enables learning from each data stream without
relying on presumptions on task IDs, task boundaries, or the
chronological order of data observation.

This work studies the challenging scenario of continual
learning under data incremental, offline setting where data
arrives sequentially and our model tries to learn new features
without forgetting previous learned representation.

C. Continual learning algorithms

Three main streams of techniques to continual learning have
been developed: regularization-based, architecture-based, and
memory-based (or rehearsal-based).

1) Regularization: This strategy seeks to retain each node’s
plasticity while preserving the information gained from earlier
nodes. Using the Fisher information matrix, Elastic Weight
Consolidation (EWC) [4] estimates the weights’ relative con-
tributions to earlier tasks. The significance of certain weights
is thus taken into account when changing weights. Using
a different regularization technique, each weight change is
penalized based on a measurement of synaptic intelligence
(SD [19]. The task specificity of each parameter is estimated,
and modifications to parameters with high task specificity are
penalized. This guarantees that the parameter stays within a
certain range of its current value, which was associated with
successful learning of the initial task.

Knowledge Distillation (KD) is an efficient manner to trans-
fer the knowledge between networks. It is initially introduced
for network compression by using the teacher-student mecha-
nism [20] and widely adopted for CL methods [21} |22] and is
considered as one of regularization techniques. However, it is
shown in [[17] that methods based on strict regularization such
as EWC and SI completely fail on class-IL setting. Instead
of directly comparing the output of the current and frozen
model, CaSSLe [23]] proposes to project the running (current)



into the same embedding space as frozen before comparing
both representations. In this paper, we follow the same idea,
but instead of projecting only the current task, we use a
buffer to replay data from previous tasks, and we project both
current and buffer data into their corresponding embedding
space produced by the frozen model.

2) Architecture: These solutions are generally based on
architectural alterations. As in [24], they add task-specific
parameters that dynamically boost the model’s capacity by
including a new layer in the network. Other approaches of
this nature dynamically build new network levels [25]]. Other
methods developed by [26, |27] try to freeze weights that the
system determines to be crucial to a specific task and that
won’t be changed by subsequent back-propagation. Similar
techniques employ a mask for every prior task to safeguard
parameters during the backward pass or to select which
parameters to utilize during the forward phase.

Since normalization layers are recognized to be crucial
for training deep neural networks [28]], recent research has
focused particularly on this layer (CN [29]). A group norm
followed by a batch norm is proposed as a replacement for BN,
which normalizes testing data using moments skewed towards
the present task and leads to greater rates of catastrophic
forgetting. This would considerably lessen the detrimental
effects of BN.

3) Memory-based approaches: The key component is to
choose a strategy to store specific exemplars. It can be a
strategy as simple as random selection or a more complex
method, as in [30]. Some models can replay the exemplars
stored in memory with the stream of data from the current
task, or they can be used as a regularization term, as in GEM
[31] or in A-GEM [32], by computing the scalar product
of the loss gradient vector of previous examples stored in
memory and the current data gradient vector. The parameters
of the model are then only updated if the scalar product is
positive. To overcome the necessity of an external memory
to store data of previous tasks, as in memory-based, certain
architectures integrate a generative model able to generate
exemplars from previous tasks. These models include the use
of a Generative Adversarial Network [33] as in [34] or a
Variational AutoEncoder [35] as in [36]. These methods are
also called Generative Replay methods. The main drawback
is that generative models are themselves prone to catastrophic
forgetting.

The most important step is to decide on a method for storing
particular examples. It can take the form of a straightforward
strategy like random selection or a sophisticated one like [|30].
By computing the scalar product of the loss gradient vectors
of previous examples stored in memory and the current data
gradient vector, some models can replay the examples stored
in memory with the stream of data from the current task, or
they can be used as a regularization term, as in GEM [31]] or
in A-GEM [32]. Only when the scalar product is positive are
the model’s parameters updated. Some designs incorporate a
generative model that may produce exemplars from prior task
in order to avoid the need for an external memory to retain

data from previous tasks, as in memory-based systems. These
models employ either a Variational AutoEncoder [35] or a
Generative Adversarial Network [33]] similar to those used in
[34] and [36]. These techniques are sometimes known as ~’gen-
erative replay” techniques. The primary flaw is that generative
models are prone to catastrophic forgetting themselves.

This paper examines the recently proposed DSDM (Dy-
namic Sparse Distributed Memory) approach for -class-
incremental learning with an associative address-content mem-
ory that evolves dynamically and continuously to model the
distribution of any non-stationary data streams. We also pro-
pose an effective memory selection that can be learned along
with any unsupervised model and act as an efficient memory
buffer.

III. CONTRIBUTIONS
A. Preliminaries in SSL

Numerous state-of-the-art SSL. approaches [/7} |8l 9} |10, (12]]
can be summarized as follows. Two associated views, xj
and x5, obtained from an image x in a batch taken from a
distribution D by using stochastic image augmentations such
random cropping, colour jittering, and horizontal flipping. The
view z; is fed to an encoder fs = f, o f, that extracts
feature representations z; = fy(x1) from its parametrized by
backbone and projection head. To produce the representation
22, To 18 similarly forwarded into the same networks, or maybe
replicas of them, and updated with an exponential moving
average (EMA). To learn the parameters, a loss function Lggr,
is used to these representations as follows:

argmingE,p|Lssr(z1, 22)] 3)
B. Distillation in CSSL

The goal of CSSL is to maximize the linear separability of
features at the ends of the CL phase and to extract the best rep-
resentations that can be used in a variety of tasks. Therefore,
the stability of the representations does not provide much value
to the linear classifier. This is because CSSL and supervised
CL are fundamentally dissimilar. Additionally, restricting rep-
resentations to remain static may impede the model from
picking up new ideas. This is particularly important for SSL
methods because (i) they exhibit different losses and feature
normalizations that may interfere with distillation and vice
versa, and (ii) their performance improves significantly with
longer training, suggesting that the representations continue to
get refined.

C. Proposed framework for CSSL

Our framework, shown in is composed of three
main components : The rehearsal model, the current model
and the frozen model.

We begin by creating a duplicate of the existing model
whenever a new task arrives. This copy won’t be changed
because it doesn’t need gradient calculation. This is referred
to as the frozen encoder f*~!. We use our stochastic image
augmentations as soon as an image x1 € D; is available which
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is appended to the data from our memory-based model, DSDM
xe (xr = m1 U x) and we extract its features z = f%(x).
Additionally, we extract another feature vector using the frozen
encoder, Z = f!~!(x). Now, we want to make sure that z has
at least (and ideally) more information than zZ. We utilize a
prediction network g to project the representations from the
new feature space to the old one rather than constraining the
two feature vectors to be comparable and preventing the new
model from learning new ideas. It is implied that Z is at least
as potent as z if the predictor can properly map from one
space to the other [23].
We then define our loss as follows :

L(z,%2) = Lssr(z ~ (21,22)) + Lp(z, 2) 4

Where Lggy, can be any of SSL loss like BarlowTwins [[12],
VICReg [7]... between distorted views and Lp is a compatible
distillation loss between distorted views from current and
frozen encoder.

D. Replay base model : DSDM

The recent online memory-based approach for task-free
class incremental learning DSDM has shown promising re-
sult in continual learning. DSDM evolves dynamically and
continually to model the distribution of any non-stationary
data streams. It relies on locally distributed, but only partially
overlapping clusters of representations to effectively eliminate
catastrophic forgetting, while at the same time, maintaining
the generalization capacities of distributed networks.

However, in order for this model to correctly model the
distributions of the incoming data, it needs an encoder capable
of performing an image-representation mapping. This is very
problematic, because in a strict continuous learning context,
this encoder will also have to be trained continually. We go
through this limitation and propose to use a partially trained
encoder to train the DSDM and the trained DSDM to perform
replay.

When a new task arrives, we combine the data from this task
with the data in our DSDM and start training our encoder.
Once finished, we use this encoder and the data from the
current task only to update our DSDM. At the end of this
process, our DSDM model contains the features representative
of the previous tasks and those of the current task.

Traditional DSDM begins with empty memory and gradu-
ally adds new neurons based on the input patterns being taken

into account and the status of the memory space. In other
words, DSDM develops new address nodes on an as-needed
basis dependent on the input. This approach is inefficient and
costly since it calls for iterating through each row of the dataset
to compute representations, distances, and decide whether to
build a new neuron in memory or update an existing one.
In this study, we suggest processing the data in batches and
switching from decision-making based on features to batch-
based decision-making. This offers the benefit of creating a
model that is considerably more reliable, fast, and effective.

IV. EXPERIMENTS AND RESULTS

A. Experiments settings

We have restricted our studies to BarlowTwins [12]] and
VICReg [7] techniques, the state-of-the-art in representation
learning, due to the significant resources and time required to
train an SSL encoder.

The datasets under consideration are CIFAR10 and CI-
FAR100, and a linear layer is used for evaluation of the three
continual learning scenarios: task, data, and class-incremental
learning.

Our memory model only keeps a tenth of the information
from each prior task. 32 samples of DSDM memory are
combined to a batch size of 128 from the current task for our
SSL encoder during training, and finally a batch size of 256
is used for the training linear model. We trained the encoder
150 epochs just for each new task.

B. Evaluation protocol

We considered the three scenarios of continual learning :

o Task-IL : When we finish training on the current task, we
evaluate using a linear classifier and the DSDM model the
encoder on the task data. The score after this task is the
average score of all classifiers trained before this task. It
gives us an idea of the class separability of the current
task.

¢ Class-IL : Unlike the previous scenario, this time we train
our linear classifier to correctly distinguish all observed
classes up to the current task. This score measures the
linear separability of the encoder on all observed tasks.

o Data-IL : Unlike Class-IL and Task-IL, each subset con-
tains all the classes of the base dataset. We thus measure
the ability of our model to produce richer features when
new data are made available.

C. Results and interpretations

1) Comparison of classic DSDM vs proposed F-DSDM:
Table If shows a comparison of classic DSDM with the DSDM
proposed in this paper in class-incremental learning scenario.
In bold the best score on the current dataset. We have obtained
significant improvement both CIFAR-10 and 100 considered.

2) Class-IL results: shows results on CIFAR-10
and 100



TABLE 1
CrLAssIC DSDM vs PROPOSED F-DSDM
Datasets CIFAR-10 CIFAR-100
Accuracy | Last | Avg | Last | Avg
DSDM 76.0 | 85.6 63.3
F-DSDM 85 90
TABLE II
CSSL FROM CASSLE VS REPLAY-BASED MODEL
Dataset CIFAR-10 CIFAR-100
Methods Linear Eval | Acc@1 | Acc@5 | Acc@1 | Acc@5
BarlowTwins Original 72.9 98.08 51 80
’ Replay 76.9 98.89 55 82.7
Original 71.8 97.96 51.5 78.5
VICReg Replay | 72.88 [ 98.08 | 5323 | 814

V. CONCLUSION

A. Conclusions on the presented work

B. Perspectives
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